M2LGP: Mining Multiple Level Gradual Patterns
نویسندگان
چکیده
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical. Keywords—Gradual Pattern.
منابع مشابه
Mining Emerging Gradual Patterns
Mining emerging patterns aims at contrasting data sets and identifying itemsets that characterise a data set by contrast to a reference data set, so as to capture and highlight their differences. This paper considers the case of emerging gradual patterns, to extract discriminant attribute co-variations. It discusses the specific features of these gradual patterns and proposes to transpose an ef...
متن کاملEfficient Parallel Mining of Gradual Patterns on Multicore Processors
Mining gradual patterns plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual patterns highlight complex order correlations of the form “The more/less X, the more/less Y”. Only recently algorithms have appeared to mine efficiently gradual rules. How...
متن کاملMining Closed Gradual Patterns
With the steady development of the computing tools, we attended last three decades a considerable increase of the quantity of data stored in databases. So, extracting knowledge from this data is of paramount importance. Data mining is becoming an inescapable tool to reach this goal. Association rule extraction is one of the important tasks in data mining. This powerful technique has a wide rang...
متن کاملPGP-mc: Towards a Multicore Parallel Approach for Mining Gradual Patterns
Gradual patterns highlight complex order correlations of the form “The more/less X, the more/less Y”. Only recently algorithms have appeared to mine efficiently gradual rules. However, due to the complexity of mining gradual rules, these algorithms cannot yet scale on huge real world datasets. In this paper, we propose to exploit parallelism in order to enhance the performances of the fastest e...
متن کاملFuzzy multiple-level sequential patterns discovery from customer transaction database
Sequential pattern discovery is a very important research topic in data mining and knowledge discovery and has been widely applied in business analysis. Previous works were focused on mining sequential patterns at a single concept level based on definite and accurate concept which may not be concise and meaningful enough for human experts to easily obtain nontrivial knowledge from the rules dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013